Sexual systems and population genetic structure in an annual plant: testing the metapopulation model.
نویسندگان
چکیده
The need for reproductive assurance during dispersal, along with the pressure of local mate competition, means that the importance of frequent or repeated colonization is implicit in the literature on sexual system evolution. However, there have been few empirical tests of the association between colonization history and sexual system in plants, and none within a single species. Here we use patterns of genetic diversity to provide such a test in the Mercurialis annua species complex, which spans the range of systems from self-compatible monoecy through androdioecy to dioecy. This variation has been hypothesized to result from differing patterns of metapopulation turnover and recolonization. Because monoecy should be favored during colonization, androdioecy and dioecy will be maintained only in regions with low rates of local extinction and recolonization, and these differences should also be reflected in patterns of neutral genetic diversity. We show that monoecious populations of M. annua display lower within-population genetic diversity than androdioecious populations and higher genetic differentiation than dioecious and androdioecious populations, as predicted by metapopulation models. In contrast, regional diversity in M. annua appears to be primarily a product of postglacial range expansion from two refugia in the eastern and western Mediterranean Basin.
منابع مشابه
Human-Mediated Gene Flow Contributes to Metapopulation Genetic Structure of the Pathogenic Fungus Alternaria alternata from Potato
Metapopulation structure generated by recurrent extinctions and recolonizations plays an important role in the evolution of species but is rarely considered in agricultural systems. In this study, generation and mechanism of metapopulation structure were investigated by microsatellite assaying 725 isolates of Alternaria alternata sampled from potato hosts at 16 locations across China. We found ...
متن کاملDetermining the structure and map of vegetation of Mirabad protected area (Iran) using DEM and Geographic Information Systems (GIS)
The Mirabad protected area (S. Azarbaijan, Iran) has a variety of ecological nurseries due to elevation of the sea, physiographic factors, micro-climates and soil types, and has high vegetation diversity. Mirabad protected area in the Piranshahr-Sardasht axis is between the latitudes of 36° 23' and 36° 31' north, and the lengths 45° 15' and 45° 25', with an area of 11435 ha, in the elevation ...
متن کاملQuantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae).
An extensive allozyme survey was conducted within a natural "meta" population of the native North American annual legume, Chamaecrista fasciculata (Leguminosae) to quantify genetic structure at different spatial scales. Gene flow was then estimated by a recently developed indirect method based on a continuous population model, using pairwise kinship coefficients between individuals. The indirec...
متن کاملGenetic Diversity and Population Structure of Iranian tulips revealed by EST-SSR and NBS-LRR Markers
The genus Tulipa L. (Liliaceae) comprises about 100 species and Iran is considered as one of the main origins of tulips. In this research, genetic diversity and population structure of 27 wild populations of tulips collected from Iran were studied by 15 highly polymorphic and reproducible expressed sequenced tag-simple sequence repeat (EST-SSR) markers and 8 nucleotide binding site (NBS)-enzyme...
متن کاملSpatially realistic plant metapopulation models and the colonization–competition trade-off
1 Results from patch-occupancy metapopulation models indicate that a trade-off between competitive and colonization abilities is necessary for species to coexist in patchy environments. However, such models are often based on unrealistic ecological assumptions, such as global dispersal and no local population dynamics. 2 We develop a plant metapopulation model that allows us to sequentially rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American naturalist
دوره 167 3 شماره
صفحات -
تاریخ انتشار 2006